

BODAS Kraftsensor KMB

- ► Kraftmessung für Hubwerksregelung und Ballenpresse
- ► Messbereiche ±25 bis ±160 kN
- ► Ausgangssignal proportionale Spannung
- ► Versorgungsspannung 5 V / 8 bis 10 V
- ► Schutzart bis IP67 / IP69K

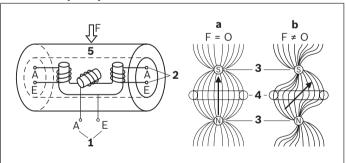
Merkmale

- ► Kraftsensor nach Kategorie 3 Heck-Dreipunktanbau ISO 730-1
- ► Sensorelement mit magnetoelastischem Messprinzip
- ► Integrierte Elektronik
- Ausgangssignal ratiometrisch und proportional zur Kraft
- Nullpunkt und Empfindlichkeit sind abgeglichen

Inhalt	
Produktbeschreibung	2
Typenschlüssel	3
Technische Daten	5
Diagramme/Kennlinien	6
Elektrischer Anschluss	7
Abmessungen	8
Projektierungshinweise	g
Einbauhinweise	10
Information	11
Zubehör	13
Sicherheitshinweise	14

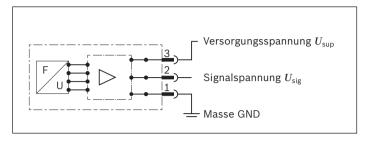
Produktbeschreibung

Der Kraftsensor ist als Lagerbolzen ausgebildet. An der Lagerstelle treten Schubspannungen auf, die als magnetoelastischer Effekt ausgewertet werden.


Im unbelasteten Zustand bildet sich durch die Primärspule zwischen den Polen ein symmetrisches Magnetfeld aus. Werden Zug- bzw. Druckkräfte eingeleitet, verändern sich die magnetischen Eigenschaften des ursprünglich isotropen Materials. In der Folge wird das Magnetfeld unsymmetrisch. Dadurch tritt eine Magnetpotenzialdifferenz zwischen den Sekundärpolen auf. Dies bewirkt einen Magnetfluss durch den Sekundärkreis, so dass eine Spannung in den Sekundärspulen induziert wird.

Diese Spannung ist proportional der einwirkenden Kraft. Sie wird in einer integrierten Auswerteschaltung verstärkt und gleichgerichtet.

Der Sensor liefert eine ratiometrische Spannung (25 % bis 75 % der Versorgungsspannung). Er ist in verschiedenen Messbereichen und Kabelvarianten lieferbar. Dieser Sensor ist typischer Bestandteil einer elektrohydraulischen Hubwerksregelung (EHC).


Dieser Sensor ist für den Einsatz in der Landtechnik vorgesehen.

▼ Funktionsprinzip

1	Primärspule
2	Sekundärspule
3	Primär-Polfläche
4	Sekundär-Polfläche
5	Stahlhülse
a	Symmetrisches Magnetfeld
b	Asymmetrisches Magnetfeld

▼ Blockschaltbild

Typenschlüssel

01	02	03	04	05		06	07
КМВ					/	30	

Type

01	Kraftmessbolzen	КМВ
----	-----------------	-----

Lastbereich

02	±25 kN	025
	±40 kN	040
	±50 kN	050
	±60 kN	060
	±90 kN	090
	±110 kN	110
	±150 kN	150
	±160 kN	160

Versorgungsspannung

03	5 ±0.5 V	05
	8 V 12 V	10

Kabelvarianten

04	Kabel ohne Schutzschlauch	1
	Kabel mit Spiral-Schutzschlauch	2
	Kabel mit Metall-Schutzschlauch	3
	Kabel mit Kunststoff-Schutzschlauch	4

Stecker

05	AMP JPT Stecker, 3-polig	Α
	DEUTSCH-Stecker; 3-polig	В
	AMP Superseal 1.5	С

Baureihe

06	30

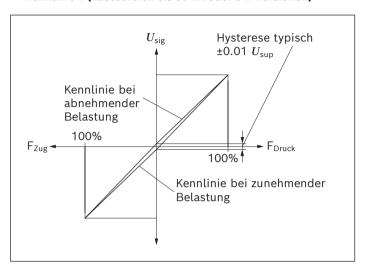
Kabellänge

07	800 mm	08
	965 mm	09
	1000 mm	10
	1500 mm	15
	1600 mm	16
	1800 mm	18
	2700 mm	27

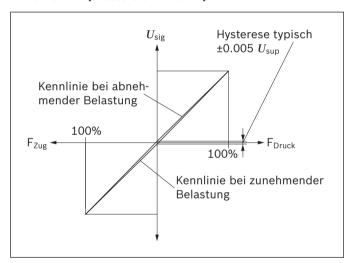
Verfügbare Varianten

Тур	Materialnummer
KMB 025 05 1A/30-15	R917007592
KMB 025 05 4A/30-08	R917008079
KMB 025 05 4A/30-15	R917008045
KMB 025 10 1A/30-15	R917000161
KMB 025 10 4A/30-08	R917000177
KMB 025 10 4A/30-10	R917000158
KMB 025 10 4A/30-15	R917000175
KMB 040 05 1A/30-15	R917008099
KMB 040 05 3A/30-15	R917008667
KMB 040 05 4A/30-18	R917008003
KMB 040 10 1A/30-15	R917000153
KMB 040 10 2A/30-27	R917000160
KMB 040 10 3A/30-15	R917000155
KMB 040 10 3A/30-15	R917001320
KMB 040 10 4A/30-08	R917000167
KMB 040 10 4A/30-16	R917000159
KMB 040 10 4A/30-18	R917000180
KMB 050 05 2A/30-08	R917008224
KMB 050 05 2C/30-08	R917014886
KMB 050 10 2A/30-08	R917000157
KMB 060 05 1A/30-15	R917008098
KMB 060 10 1A/30-15	R917000154
KMB 060 10 2A/30-27	R917000164
KMB 060 05 3A/30-15	R917008077
KMB 060 10 3A/30-15	R917000156
KMB 060 05 4A/30-08	R917009962
KMB 060 05 4A/30-18	R917008060
KMB 060 10 4A/30-08	R917000166
KMB 060 10 4A/30-15	R917000173
KMB 060 10 4A/30-16	R917000165
KMB 060 10 4A/30-18	R917000181
KMB 090 10 1A/30-15	R917000168
KMB 090 10 1A/30-15	R917000171
KMB 090 10 2A/30-27	R917001969
KMB 090 05 3A/30- 15	R917008078
KMB 090 10 3A/30-15	R917000163
KMB 090 05 4A/30-18	R917008061
KMB 090 10 4A/30-15	R917000172
KMB 090 10 4A/30-18	R917000275
KMB 110 05 1A/30-15	R917005142

Тур	Materialnummer
KMB 110 10 1A/30-15	R917000179
KMB 110 10 2A/30-08	R917000162
KMB 150 10 1A/30-15	R917A05986

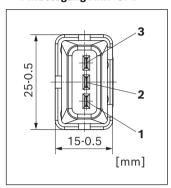

Weitere Varianten auf Anfrage.

Technische Daten


Тур		025	040	050	060	090	110	150
Lastbereich	F	±25 kN	±40 kN	±50 kN	±60 kN	±90 kN	±110 kN	±150 kN
Überlastbereich Standard		±80 kN	±80 kN	±80 kN	±160 kN	±160 kN	±160 kN	±220 kN
Genauigkeit	im Nullpunkt (0 kN)	$4 \% U_{\text{sup}}$						
	$F_{\sf min}$ und $F_{\sf max}$	$2 \% U_{\text{sup}}$						
Elektrisch messbare Überlast		+1.2 F _{Druc}	.k −1.5 F _{Zu}	g				
Versorgungsspannung	U_{sup}	8 10 V geregelte Spannung (keine direkte Versorgung aus Bordnetz (Batterie)) oder 5±0.5 V						
Versorgungsstrom	I_{sup}	5±0.5 V: Einschalt	-Strom = 1 A	; Betriebsst	rom = 20 mA	(pulsiert zv	vischen -20 ı	und 40 mA)
	*sup	8 10 V Einschalt		.; Betriebsst	rom = 40 mA	(pulsiert zv	vischen -40 ı	und 90 mA)
Signalspannung	U_{sig}		% U_{sup} bei 8 % U_{sup} bei 5					
Untere Klemmspannung	$U_{Clamp\ Low}$		bei 8 10 \ bei 5±0.5 \					
Obere Klemmspannung	$U_{Clamp\ High}$		bei 8 10 bei 5±0.5 \					
Lastwiderstand		≥ 10 k Ω (≥ 50 k Ω , bei Verwendung in sicherheitsrelevanten Anwendungen, bei denen ein GND-Drahtbruch erkannt werden soll)						
Kennlinie		1	1	1	2	2	2	2
Hysterese	Hysterese Siehe Kapitel "Diagramme/Kennlinien"							
Betriebstemperaturbereich		-35 +8	5 °C					
Maximale Temperatur für Troc bei Lackierung:	cknungsprozeß	+130 °C I	oei max. 2 h					
Schutzart mit montiertem	AMP JPT	IP67 und	IP69K					
Gegenstecker	AMP Superseal 1.5	IP69K	,	,				
	DEUTSCH	IP66K						
Schüttelbeanspruchung		24 g						
Gegenstecker		3-poliger	Stecker mit	Einzeladera	bdichtung			
Elektromagnetische Verträglichkeit (EMV)	ISO 11452-5 2002-04; 1 2 GHz	150 V/m ≤ ±0.5 % <i>U</i> _{sup}						
CE		ISO 1498	2:2009					
Lagerzeit		tur zwisc	hen -10 °C u	nd +30 °C. I	en Luftfeuch Kurzzeitig ist 40°C zuläss	für bis zu 1		

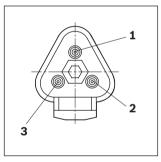
Diagramme/Kennlinien

▼ Kennlinie 1 (Lastbereich bis 50 kN oder 5 V-Versionen)


▼ Kennlinie 2 (Lastbereich ab 60 kN)

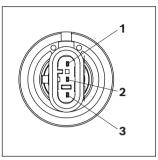
Elektrischer Anschluss

Stecker


▼ Pinbelegung AMP JPT

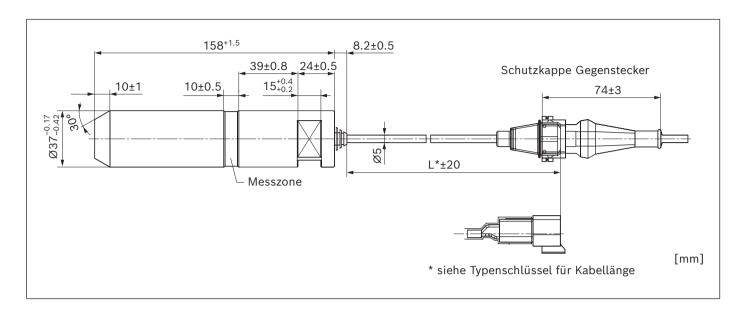
Beim Verpolen $U_{\rm sup}$ mit GND entsteht ein Kurzschluss. Der Kurzschlussstrom darf 1 A nicht überschreiten. Eine Strombegrenzung im System ist daher erforderlich.

Pin	Anschluss	
1	Masse	GND
2	Signalspannung	U_{sig}
3	Versorgungsspannung	U_{sup}


▼ Pinbelegung DEUTSCH

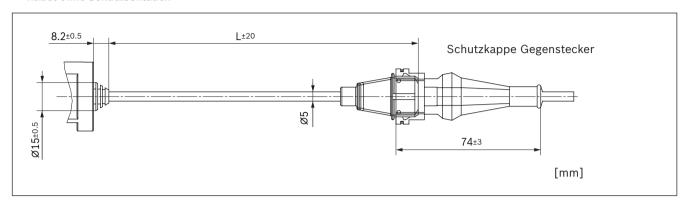
Beim Verpolen $U_{\rm sup}$ mit GND entsteht ein Kurzschluss. Der Kurzschlussstrom darf 1 A nicht überschreiten. Eine Strombegrenzung im System ist daher erforderlich.

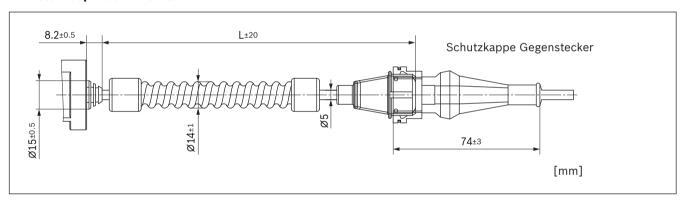
Pin	Anschluss	
1	Versorgungsspannung	U_{sup}
2	Signalspannung	U_{sig}
3	Masse	GND


▼ Pinbelegung AMP Superseal 1.5

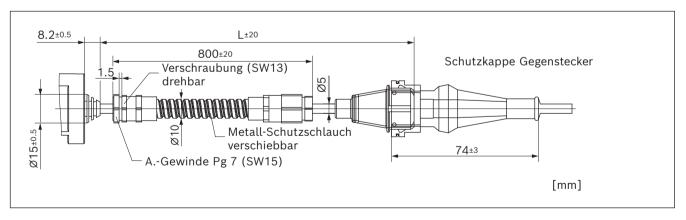
Beim Verpolen $U_{\rm sup}$ mit GND entsteht ein Kurzschluss. Der Kurzschlussstrom darf 1 A nicht überschreiten. Eine Strombegrenzung im System ist daher erforderlich.

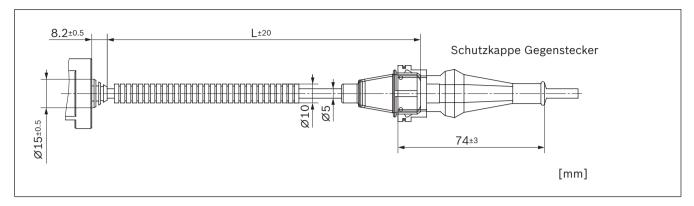
Pin	Anschluss	
1	Masse	GND
2	Signalspannung	U_{sig}
3	Versorgungsspannung	U_{sup}

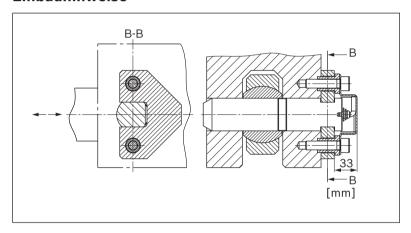

Abmessungen


Projektierungshinweise

Kabelvarianten


▼ Kabel ohne Schutzschlauch


▼ Kabel mit Spiral-Schutzschlauch


▼ Kabel mit Metall-Schutzschlauch

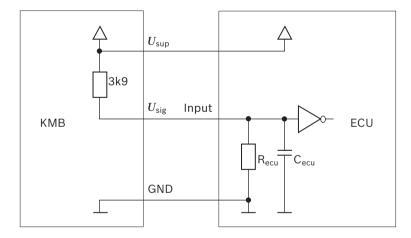
▼ Kabel mit Kunststoff-Schutzschlauch

Einbauhinweise

- ► Siehe Einbauzeichnung Y 830 304 223, um Messunsicherheiten zu vermeiden
- ▶ Definierte Krafteinleitung, z. B. Kugelbuchse
- ► Schwimmende Befestigung in radialer Richtung mit Schlüsselplatte

Information

Sicherheitsbezogene Eigenschaften gemäß ISO 25119:2018


Die Sicherheitsfunktion des Kraftsensors KMB wird als Systemintegrität definiert, d. h. KMB sollte die auf ihn aufgewendete Kraft messen, berechnen und die Kraft fehlerlos in einen analogen Spannungsausgang umwandeln.

- ► KMB verfügt über eine Architektur der Kategorie B (einkanalig)
- ▶ KMB ist nicht mit sicherheitsrelevanter Software versehen
- ▶ KMB erfüllt die Anforderungen der grundlegenden und bewährten Sicherheitsprinzipien

Temperaturprofil und die entsprechenden MTTF_D und DC_{avg}

	·	. 0		
Temperatur	Eigenerwärmung	Betriebsstunden	MTTF _D	DC _{avg} 1)
(°C)	(°C)	(%)	(Jahre)	(%)
10	5	2		
20	5	2		
30	5	12		
40	5	13		
50	5	17	738	35
60	5	18		
70	5	15		
80	5	15		
85	5	6		

- 1) Es wird davon ausgegangen, dass das Maschinensteuergerät
 - die Sensorversorgungsspannung überwacht und den Sensor bei Überstrom, Über- und Unterspannung abschaltet.
 - auf die Bereichsüberschreitung des Sensorausgangs reagiert und die Maschine in einen sicheren Zustand bringt.

Fehlererkennungsmöglichkeiten

Der KMB hat einen internen Widerstand von 3.9 k Ω zwischen U_{sup} und U_{sig} . Bei einer Unterbrechung des KMB GND-Kabels bildet der interne Widerstand des KMB mit dem Eingangswiderstand R_{ECU} des ECUs einen Spannungsteiler, was zu einem U_{sig} führt, das vom R_{ECU} abhängt aber unter U_{sup} liegt. Während der Systemintegration der Maschine ist eine Unterbrechung des KMB GND-Kabels zu simulieren und das entsprechende Ausgangssignal des KMB ($U_{\text{OC GND}}$) zu messen. Es ist sicherzustellen (z. B. mit zusätzlichen Widerständen), dass $U_{\text{OC GND}}$ > 92 % U_{sup} .

Ausfälle des KMB, die zur Bereichsüberschreitung des Ausgangsignals führen und deshalb vom Maschinensteuergerät erkannt werden, sind in folgender Tabelle aufgeführt:

Ausfall	Fehlerreaktion	Reaktionszeit
Anschlussstecker-/ Kabelbruch von $U_{ m sig}$, und/oder KMB interne Ausfälle, die denselben Effekt haben	Bereichsüberschreitung des Sensorausgangs: $U_{\rm sig}$ < 8 % $U_{\rm sup}$	unmittelbar
Kurzschluss zwischen $U_{ m sig}$ und $U_{ m sup}$ und/oder KMB interne Ausfälle, die denselben Effekt haben	Bereichsüberschreitung des Sensorausgangs: $U_{\rm sig}$ = $U_{\rm sup}$	unmittelbar
Kurzschluss zwischen $U_{\rm sig}$ und GND und/oder KMB interne Ausfälle, die denselben Effekt haben	Bereichsüberschreitung des Sensorausgangs: $U_{\rm sig}$ = 0 V	unmittelbar
Anschlussstecker-/ Kabelbruch von U_{sup} , und/oder KMB interne Ausfälle, die denselben Effekt haben	Bereichsüberschreitung des Sensorausgangs: $U_{\rm sig}$ < 8 % $U_{\rm sup}$	250 ms ¹⁾
Anschlussstecker-/ Kabelbruch von GND, und/oder KMB interne Ausfälle, die denselben Effekt haben	Bereichsüberschreitung des Sensorausgangs: $U_{\rm sig}$ > 92 % $U_{\rm sup}$	250 ms ¹⁾

¹⁾ Reaktionszeiten gelten für Maschinensteuergerät mit R_{ECU} = 50 ... 200 k Ω und C_{ECU} = 100 nF

Zubehör

AMP JPT Gegenstecker R917000515¹⁾

Bezeichnung	Anzahl	Bestellangaben	
Gehäuse	1	1928402579 ²⁾	
Schutzkappe	1	1280703022 ²⁾	
Kontakte	3	929939 ³⁾	
Einzelader-Abdichtung	3	828 905-1 ³⁾	bei FLK Kabeltyp
(Drahtgröße 0.5 1 mm²)	3	828 904-1 ³⁾	bei FLKr, FLX Kabel

AMP Superseal 1.5 Gegenstecker⁴⁾

Bezeichnung	Anzahl	Bestellangaben
Gehäuse	1	282 087-1 ⁵⁾
Kontakte mini	3	183 035-1 ⁵⁾
Einzelader-Abdichtung	3	281934-4 ⁵⁾

DEUTSCH Gegenstecker R9026035246)

Bezeichnung	Anzahl	Bestellangaben
Steckverbindung	1	DT06-3S-EP04 ⁷⁾
Keilverriegelung	1	W3S ⁷⁾
Kontakte	3	0462-201-16141 ⁷⁾

 $[\]scriptstyle{\rm 1)}$ Der Gegenstecker ist nicht im Lieferumfang enthalten.

²⁾ Zu beziehen bei Fa. Bosch

³⁾ Zu beziehen bei Fa. AMP

⁴⁾ Der Gegenstecker ist nicht im Lieferumfang enthalten.

⁵⁾ Zu beziehen bei Fa. AMP

⁶⁾ Der Gegenstecker ist nicht im Lieferumfang enthalten.

⁷⁾ Zu beziehen bei Fa. DEUTSCH

Sicherheitshinweise

Allgemeine Hinweise

- ► Vor Festlegung Ihrer Konstruktion verbindliche Einbauzeichnung anfordern.
- ► Die Schaltungsvorschläge von Bosch Rexroth beinhalten keinerlei systemtechnische Verantwortung für die Anlage.
- ▶ Öffnen des Sensors, Änderungen bzw. Reparaturen am Sensor sind untersagt. Änderungen bzw. Reparaturen an der Verkabelung können zu gefährlichen Fehlfunktionen führen.
- ► Montage/Demontage des Sensors nur im spannungslosen Zustand zulässig.
- ➤ Systementwicklungen, Installation und Inbetriebnahmen von elektronischen Systemen zur Steuerung hydraulischer Antriebe dürfen nur von ausgebildeten und erfahrenen Spezialisten vorgenommen werden, die mit dem Umgang der eingesetzten Komponenten sowie des Gesamtsystems hinreichend vertraut sind.
- Bei der Inbetriebnahme des Sensors können von der Maschine unvorhergesehene Gefahren ausgehen. Stellen Sie daher vor Beginn der Inbetriebnahme sicher, dass sich Fahrzeug und Hydrauliksystem in einem sicheren Zustand befinden.
- ► Achten Sie darauf, dass sich keine Personen im Gefahrenbereich der Maschine aufhalten.
- ► Es dürfen keine defekten oder inkorrekt arbeitenden Komponenten eingesetzt werden. Sollte der Sensor ausfallen bzw. Fehlverhalten aufweisen, muss dieser ausgetauscht werden.
- ► Trotz Sorgfalt bei der Zusammenstellung dieses Dokuments können nicht alle erdenklichen Anwendungsfälle berücksichtigt werden. Sollten Sie Hinweise auf Ihre spezielle Applikation vermissen, können Sie sich mit Bosch Rexroth in Verbindung setzen.
- ▶ Der Einsatz von Sensoren durch private Nutzer ist nicht zulässig, da diese in der Regel nicht über die erforderlichen Fachkenntnisse verfügen.

Hinweise zu Einbauort und -lage

- ► Montieren Sie den Sensor nicht in der Nähe von Teilen mit großer Hitzeentwicklung (z. B. Auspuff).
- ► Leitungen sind in ausreichendem Abstand zu heißen und beweglichen Fahrzeugteilen zu verlegen.
- ► Der Abstand zu funktechnischen Einrichtungen muss ausreichend groß sein.
- ► Vor Elektroschweiß- und Lackierarbeiten ist der Sensor spannungsfrei zu schalten und der Stecker des Sensors abzuziehen.

► Durch Einzelabdichtung der Kabel/Adern muss sichergestellt werden, dass kein Wasser in den Sensor gelangen kann.

Hinweise zu Transport und Lagerung

- ▶ Bitte untersuchen Sie den Sensor auf eventuell auftretende Transportschäden. Sind offensichtlich Schäden vorhanden, teilen Sie dies bitte dem Transportunternehmen und Bosch Rexroth unverzüglich mit.
- ► Nach einem Sturz des Sensors ist eine Weiterverwendung nicht zulässig, da nicht sichtbare Schäden die Zuverlässigkeit beeinträchtigen können.

Hinweise zur Beschaltung und Leitungsführung

- ▶ Die Leitungen zu den Sensoren müssen so ausgelegt sein, dass eine ausreichende Signalqualität gewährleistet ist. Das bedeutet so kurz wie möglich und gegebenenfalls geschirmt. Bei Abschirmung muss diese einseitig mit der Elektronik (Gehäusemasse nicht Signalmasse) oder über einen niederohmigen Anschluss mit dem Gerät oder der Fahrzeugmasse verbunden werden.
- ► Der Gegenstecker des Sensors darf nur im spannungslosen Zustand gesteckt und gezogen werden.
- ► Die Sensorleitungen sind empfindlich gegenüber Störstrahlungen. Daher sollten folgende Maßnahmen beim Betrieb des Sensors beachtet werden:
 - Sensorleitungen sollten so weit wie möglich von großen elektrischen Maschinen angebracht werden.
 - Wenn die Signalanforderungen erfüllt sind, besteht die Möglichkeit, das Sensorkabel zu verlängern.
- ► Leitungen vom Sensor zur Elektronik dürfen nicht in der Nähe von anderen leistungsführenden Leitungen im Gerät bzw. Fahrzeug verlegt werden.
- ► Der Kabelbaum ist im Bereich der Anbaustelle (Abstand < 150 mm) des Sensors mechanisch abzufangen. Der Kabelbaum ist so abzufangen, dass phasengleiche Anregung mit dem Sensor erfolgt (z. B. an der Anschraubstelle des Sensors).
- ► Leitungen sollten nach Möglichkeit im Fahrzeuginneren verlegt werden. Sollten die Leitungen außerhalb des Fahrzeugs verlegt werden, ist auf sichere Befestigung zu achten.
- ► Leitungen dürfen nicht geknickt oder verdreht werden, nicht an Kanten scheuern und nicht ohne Schutz durch scharfkantige Durchführungen verlegt werden.

Bestimmungsgemäße Verwendung

- ► Der Sensor ist konzipiert für den Einsatz in mobilen Arbeitsmaschinen, insoweit keine Einschränkungen/ Beschränkungen auf bestimmte Anwendungsbereiche in diesem Datenblatt vorgenommen werden.
- ▶ Der Betrieb des Sensors muss generell innerhalb der in diesem Datenblatt spezifizierten und freigegebenen Betriebsbereiche erfolgen, insbesondere hinsichtlich Spannung, Strom, Temperatur, Vibration, Schock und sonstigen beschriebenen Umwelteinflüssen.
- ▶ Die Verwendung außerhalb der spezifizierten und freigegebenen Randbedingungen kann zu Gefährdung von Leben und/oder Schäden an den Komponenten führen, bzw. Folgeschäden an der mobilen Arbeitsmaschine nach sich ziehen.
- Bei Nichtbeachten entsprechender Vorschriften können unter Umständen schwere Körperverletzungen und/oder Sachschäden auftreten.

Nicht bestimmungsgemäße Verwendung

- ► Als nicht bestimmungsgemäße Verwendung gilt, wenn Sie den Sensor anders verwenden, als es im Kapitel "Bestimmungsgemäße Verwendung" beschrieben ist.
- ► Ein Einsatz in explosionsgefährdeten Bereichen ist unzulässig.
- Bei Schäden, die aus nicht bestimmungsgemäßer Verwendung und/oder aus eigenmächtigen, in diesem Datenblatt nicht vorgesehenen Eingriffen entstehen, erlischt jeglicher Gewährleistungs- und Haftungsanspruch gegenüber dem Hersteller.

Verwendung in sicherheitsbezogenen Funktionen

- ► Der Kunde ist für die Durchführung einer Risikoanalyse der Maschine und für die Festlegung möglicher Sicherheitsfunktionen der Maschine verantwortlich.
- Es liegt im Verantwortungsbereich des Kunden, das komplette sicherheitsrelevante System zu bewerten und die Geeignetheit von KMB für Sicherheitsfunktionen der Maschine zu bestimmen.
 - KMB als eine einzelne Komponente erfüllt die Anforderungen der ISO 25119:2018 AgPL b, eingeschränkt durch DC. Bei Verwendung als Teil eines sicherheitsbezogenen Maschinensystems der Kategorie 2, wo eine höhere DC-Stufe über die Überwachung und/oder zusätzlicher Prüfkonzepte erreicht werden könnte, kann jedoch eine Sicherheitsstufe bis zu AgPL c unterstützt werden.

- Die Fehlerreaktionen des KMB sind in der Tabelle oben aufgeführt. Der KMB darf nicht verwendet werden, wenn sich zeigt, dass die Reaktionszeit einschließlich der Fehleransprechzeit für die Sicherheitsfunktionen der Maschine nicht ausreichend sind.
- ► Das Maschinensteuergerät überwacht die Sensorversorgungsspannung und schaltet den Sensor bei Überstrom, Über- und Unterspannung ab.
- ► Das Maschinensteuergerät muss den Sensorausgang überwachen und auf die Bereichsüberschreitung des Sensorausgangs reagieren, indem sie die Maschine in einen sicheren Zustand bringt.
- ▶ Wird der KMB außerhalb der mechanischen Spezifiaktion betrieben, kann es zu einem Nullpunktversatz oder Bruch kommen. Erkennung von fehlerhaften Betriebszuständen des Sensors muss vom übergeordneten System sicher gestellt werden und eine entsprechende Abhilfe definiert und implementiert sein.
- ► Es muss vom Kunden ein effizienter Feldbeobachtungsprozess festgelegt werden. Alle Feldausfälle mit Beteiligung des KMB sollten umgehend an Bosch Rexroth gemeldet werden, selbst wenn sie nicht unter die Gewährleistung fallen.

Entsorgung

▶ Die Entsorgung des Sensors und der Verpackung muss nach den nationalen Umwelt-Bestimmungen des Landes erfolgen, in dem der Sensor verwendet wird.

Weiterführende Informationen

► Weiterführende Informationen zum Sensor finden Sie unter www.boschrexroth.de/mobilelektronik.

Bosch Rexroth AG

Robert-Bosch-Straße 2 71701 Schwieberdingen Germany Service Tel. +49 9352 40 50 60 info.bodas@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2004. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen. Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.